Critical lysine residues within the overlooked N-terminal domain of human APE1 regulate its biological functions
نویسندگان
چکیده
Apurinic/apyrimidinic endonuclease 1 (APE1), an essential protein in mammals, is involved in base excision DNA repair (BER) and in regulation of gene expression, acting as a redox co-activator of several transcription factors. Recent findings highlight a novel role for APE1 in RNA metabolism, which is modulated by nucleophosmin (NPM1). The results reported in this article show that five lysine residues (K24, K25, K27, K31 and K32), located in the APE1 N-terminal unstructured domain, are involved in the interaction of APE1 with both RNA and NPM1, thus supporting a competitive binding mechanism. Data from kinetic experiments demonstrate that the APE1 N-terminal domain also serves as a device for fine regulation of protein catalytic activity on abasic DNA. Interestingly, some of these critical lysine residues undergo acetylation in vivo. These results suggest that protein-protein interactions and/or post-translational modifications involving APE1 N-terminal domain may play important in vivo roles, in better coordinating and fine-tuning protein BER activity and function on RNA metabolism.
منابع مشابه
Human Apurinic/Apyrimidinic Endonuclease (APE1) Is Acetylated at DNA Damage Sites in Chromatin, and Acetylation Modulates Its DNA Repair Activity
Apurinic/apyrimidinic (AP) sites, the most frequently formed DNA lesions in the genome, inhibit transcription and block replication. The primary enzyme that repairs AP sites in mammalian cells is the AP endonuclease (APE1), which functions through the base excision repair (BER) pathway. Although the mechanism by which APE1 repairs AP sites in vitro has been extensively investigated, it is large...
متن کاملRegulation of limited N-terminal proteolysis of APE1 in tumor via acetylation and its role in cell proliferation
Mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1), a ubiquitous and multifunctional protein, plays an essential role in the repair of both endogenous and drug-induced DNA damages in the genome. Unlike its E.coli counterpart Xth, mammalian APE1 has a unique N-terminal domain and possesses both DNA damage repair and transcriptional regulatory functions. Although the overexpression of APE...
متن کاملNucleolar accumulation of APE1 depends on charged lysine residues that undergo acetylation upon genotoxic stress and modulate its BER activity in cells
Apurinic/apyrimidinic endonuclease 1 (APE1) is the main abasic endonuclease in the base excision repair (BER) pathway of DNA lesions caused by oxidation/alkylation in mammalian cells; within nucleoli it interacts with nucleophosmin and rRNA through N-terminal Lys residues, some of which (K(27)/K(31)/K(32)/K(35)) may undergo acetylation in vivo. Here we study the functional role of these modific...
متن کاملThe Human Thioredoxin System: Modifications and Clinical Applications
The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...
متن کاملRedox Factor-1 Activates Endothelial SIRTUIN1 through Reduction of Conserved Cysteine Sulfhydryls in Its Deacetylase Domain
Apurinic/Apyrmidinic Endonuclease 1/Redox Factor-1 (APE1/Ref-1) is a reductant which is important for vascular homeostasis. SIRTUIN1 (SIRT1) is a lysine deacetylase that also promotes endothelium-dependent vasorelaxation. We asked if APE1/Ref-1 governs the redox state and activity of SIRT1, and whether SIRT1 mediates the effect of APE1/Ref-1 on endothelium-dependent vascular function. APE1/Ref-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2010